Enhancing the water splitting performance via decorating Fe2O3 nanoarrays with oxygen-vacancy-rich Ni1-xFexS electrocatalyst
نویسندگان
چکیده
منابع مشابه
Electrocatalyst decorated hematite nanowire arrays for photoelectrochemical water splitting
متن کامل
TiO2 and Fe2O3 films for photoelectrochemical water splitting.
Titanium oxide (TiO2) and iron oxide (α-Fe2O3) hematite films have potential applications as photoanodes in electrochemical water splitting. In the present work TiO2 and α-Fe2O3 thin films were prepared by two methods, e.g., sol-gel and High Power Impulse Magnetron Sputtering (HiPIMS) and judged on the basis of physical properties such as crystalline structure and surface topography and functio...
متن کاملHigh-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting.
Many narrow band-gap semiconductors cannot fulfil the energetic requirements for water splitting, thus the assistance of large external voltages to complete the water decomposition reaction is required. Through thermal decomposition of Fe(NO3)3 on n-Si nanowires prepared by the chemical etching method, we fabricated a high-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode that exhib...
متن کاملEnhancing the Performance of Solar Water Disinfection with Potassium Persulfat: Laboratory Study with Enterococcus faecalis
Background & Aims of the Study: The safe drinking water providing is one of the most crucial objections in these centenaries. Bacterial water contamination and high rate of morbidity and mortality is crucial health threat. Efficiency of potassium persulfat (KPS) associated solar disinfection as a novel water disinfection technology was evaluated in batch scale experiments, us...
متن کاملBranched TiO2 nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting.
This paper describes the design, characterization, and utilization of branched TiO2 nanoarrays sensitized with CdS quantum dots as anodes for photoelectrochemical water splitting. The remarkable photocurrent density (∼4 mA cm(-2) at a potential of 0 V versus Ag/AgCl) and high solar to hydrogen efficiency of the materials obtained were ascribed to the novel branched nanostructure and efficient e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Today Physics
سال: 2021
ISSN: 2542-5293
DOI: 10.1016/j.mtphys.2020.100317